

高品質な酸化を低温で実現する Reactive Nion[™]

反応性酸素負イオン照射装置

Reactive Negative atomic oxygen (O⁻) Ion irradiation equipment

Reactive Nion[™]は、低圧アークプラズマで生成した高密度 な酸素負イオンにエネルギーを付与して照射する装置です。 従来の酸化処理に比べ、高品質な酸化を低温で実現します。

特長

- 低圧アークプラズマによる高密度酸素負イオン (O-) 生成
 - ✓ O⁻ を高効率に生成できる電子温度制御を独自技術で実現します。
 - ✓ 酸化に強い圧力勾配型プラズマガンを使用し、長時間運転を実現します。
- 酸素負イオン照射による高反応酸化処理
 - ✓ 他の活性酸素種 (オゾンなど) より酸素負イオン (O-) は高反応性です。
 - ✓ 酸化に必要な反応エネルギーをバイアス電圧印加により付与・制御します。
- 低温かつチャージアップフリー処理
 - ✓ 中性化 (O⁻ → O) が吸熱反応であり低温処理が可能です。
 - ✓ 負イオン照射はチャージアップフリーであり別の電子源が不要です。

Reactive Nion[™]の動作原理

- プラズマガンからアルゴン (Ar) プラズマを チャンバ内に導入する。
- Ar プラズマがチャンバ内の酸素 (O₂) と反応し、酸素負イオン (O⁻) が生成される。
- プラズマガンからチャンバへの Ar プラズマの導入を停止する。
- ④ チャンバ内の電子が無くなる時間まで待機 する。
- 5 基板 (照射対象) にバイアスを印加し、O-を 照射する。

上記の 1~5 を繰り返し、対象物の酸化を行います。 住友重機械独自のプラズマ制御技術により、安定し たアークプラズマの ON/OFF を行うことで、効率的 な O⁻ 生成および対象物の酸化を実現します。

プラズマの様子

<u>低温電子プラズマ</u>

<u>高温電子プラズマ</u>

● 照射仕様に合わせて、プラズマの電子温度を制御し、最適な O- 生成・照射を行います。

Reactive Nion[™] と他のイオン照射技術との比較

 Reactive Nion[™] は高密度な負イオンをスパッタなどが起きない低エネルギー (<100 eV) で対象物表面に照射を行います。

熱酸化と負イオン酸化の違い

負イオン酸化は、熱酸化に比べて遥かに低温での酸化を実現できる

半導体:SiC ウエハの低温酸化処理 (特願2022-158839)

- O⁻ 照射では、非加熱、200℃ で SiO, 膜 を形成できる。
- 熱酸化に比べて処理温度の低温化が 可能である。

✓ 低温での酸化膜形成 ✓ 後工程での酸化処理

金属・酸化物半導体:Cu 板の低温酸化処理

5 6

4

Oxidation Time (a.u.)

*山本他,「塗装工学」 Vol. 57, No.2 (2022)

10

O

*ドライ酸化 (800℃ 時)の酸化膜厚 :

0

植松他、表面科学 Vol.23, No. 2, pp. 104-110, 2002.

-▲- O⁻@200°C, 0.3 Pa

3

2

① 未照射 Cu 板 ② 15V , 10min ③ 30V , 10min ④ 45V , 10min (5) 45V , 30min 全て室温(非加熱)で照射

7

- 従来、p形 Cu₂Oの形成には 1000℃、 5時間の熱酸化と急冷処理が必要であ る (高温相の形成方法)。
- O⁻ 照射では、非加熱で Cu₂O を形成で きる。
- マスク照射で任意形状の酸化ができる。
- ✓ 低温での Cu₂O (高温相) 形成 ✓ 任意形状の酸化処理

酸化物半導体:成膜後での ITO 膜の電気・光学特性の制御

- O⁻ 照射では、成膜後の ITO (Indium Tin Oxide) 膜のキャリア密度 (n_e) およびバ ンドギャップ (E_a) の制御が可能である。
- O⁻ 照射により、¹ITO 膜中の酸素空孔 (V_o) を減少させ、かつ、過剰に酸化さ せ分子軌道を変化させることで、更に *E_a* を縮小できる。
- O⁻ 照射による ITO 膜の結晶構造の変化 は無く、移動度 (μ) と n_e を制御できる。
 V_O減少の範囲では μ は増加する。
- O⁻ 照射により n_e と E_g を制御できるため、透過率も調整できる。
 - ✓ 成膜後での酸素空孔制御
 ✓ 電気・光学特性の制御

酸化物半導体:GZO 膜の結晶性制御、水素ガスセンサ性能向上

結晶性制御

*山本他, J. Vac. Soc. Jpn., Vol. 60, No. 8, pp. 292-299 (2017).

評価機の仕様

酸素負イオン照射評価機のレイアウト例

	1 11 144	/ 1 + 😤
Ψ4	Ⅲ(援)	1丁1汞

基板サイズ	最大 4 inch (φ101.6 mm)
基板温度	室温~800℃
到達真空度	5.0×10⁻⁵ Pa 以下
処理時圧力	0.2 ~ 1.0 Pa 程度
バイアス電圧	最大 100 V
導入ガス	O ₂ , Ar
	(NH ₃ , CH ₄ などは検討中)

ユーティリティ					
フットプリント		2.1 m × 2.3 m			
冷却水		40 lit/min (0.5 MPa)			
プロセスガス	Ar	100 sccm 以上 × 2 系統			
	O ₂	100 sccm 以上 × 1 系統			
圧縮空気		0.5 MPa \sim 0.6 MPa			
真空ポンプ排気		2.8 Nm ³ /min			
電力 (AC 200 V)		40 KVA			
電力 (AC 100 V)		3 KVA			
アース		C 種接地 10Ω以下			

📀 住友重機械工業株式会社

	産業機器事業部	医療・	先端機器統括部	営業部
--	---------	-----	---------	-----

本社 〒141-6025 東京都品川区大崎2-1-1 ThinkPark Tower TEL:03-6767-2570 FAX:03-6866-5114 関西支社 〒530-0005 大阪市北区中之島2-3-33 大阪三井物産ビル TEL:06-7635-3629 FAX:06-7711-5104

https://www.shi.co.jp