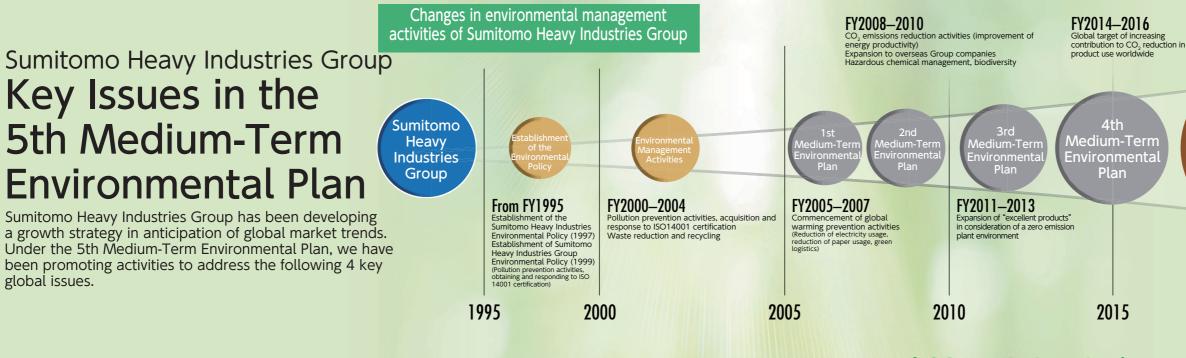
ENVIRONMENTAL INITIATIVES


Environmental Activity Report

Key Issues in the 5th Medium-Term Environmental Plan	1
Environmental Management System	3
Environmental Targets (Medium-Term Plan) and Accomplishment	4
Global Warming Prevention Activities	6
Recycling-Oriented Society Activities	8
Chemical Management Activities	9
Environmental load Data1	0

(1) Strengthening of environmental risk management

Sumitomo Heavy Industries Group works on prevention of environmental incidents and continuous improvement and vitalization of its environmental management system.

(2) Reduction of CO_2 emissions in product life cycle

Among the "environmental loads in the product life cycle", we will work on "reduction of CO₂ emissions", which is one of the largest "environmental loads (in particular, impacts on global warming)."

(3) Reduction of environmental loads associated with business activities

Among the "environmental loads in the product life cycle", we will work on "reduction of environmental loads" associated with business activities other than "CO₂ emissions".

(4) Conservation of biodiversity

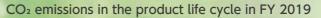
We will work mainly on "reduction of environmental loads in the product life cycle" including (contribution to) reduction of CO₂ emissions that have the largest impact on biodiversity.

Amount of CO₂ emissions in the entire product life cycle and contribution amount of CO₂ reduction during product use

 $Of CO_2$ emissions in the entire product life cycle, amount of CO₂ emissions during product use (excluding energy devices and biomass) is as huge as approximately 1.1 million tons. While the CO₂ emissions reduction effect during product use was 1.7 million tons in FY 2019, it is an important issue how to contribute to the society by enhancing this reduction effect in addition to the reduction of CO₂ emissions during manufacturing.

Fie

Energy

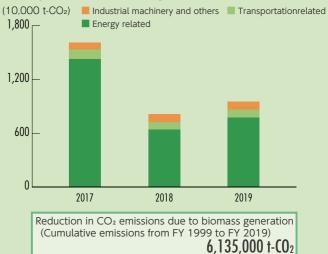

Transp

Biomass power station (AWEP YAMAGUCHI Co., Ltd.)

Boron-neutron capture therapy (BNCT) system

CO₂ emissions reduction in the product life cycle

5th Medium-Term Environmental Plan


Excellent Eco Factory

2020

Contribution amount of CO₂ reduction with products (Main products delivered during FY 2019)

			(10,000 1002)
eld emi	ntribution to CO ₂ ission reduction in product life cycle d on design standard	Basis for calculation	on Product
y related	775.7	Reduction and higher efficiency through biomass	CFB boiler, turbine
portation- d	85.7	Improved fuel efficiency and propulsion through model changes, etc.	Aframax tanker
rial nery and	90.4	Improved fuel efficiency through model changes, reduced energy usage, use of renewable energy, higher efficiency	Hydraulic shovels, forklifts, plastic extrusion molding equipment, precision vacuum pumps, air diffusers, mixers, etc.
	951.7		

Contribution to CO₂ emissions reduction in the product life cycle (based on design standard)

Environmental management system

Sumitomo Heavy Industries Group Environmental Policy

Environmental Philosophy

The Sumitomo Heavy Industries Group ("SHI Group") will adhere to the principles of the Sumitomo Business Spirit and make sincere efforts towards the preservation of the global environment throughout of all its business activities with the aim of achieving a sustainable society.

Environmental Policy

The SHI Group will, based on its environmental philosophy, positively and actively make efforts in the following areas:

- 1. Prevention of environmental pollution;
- 2. Contribution to a low-carbon society;
- 3. Achievement of a recycling-based society;
- 4. Preservation of biodiversity;
- 5. Compliance with laws and other regulations; and
- 6. Strengthening and continuous improvement of the environmental management system

Sumitomo Heavy Industries, Ltd. May 1, 2017

Environmental management system

President and CEC	Executive E	Executive Board (three times a year)			
General Administrat	ion Examinatic	on by General Manag	er (once a year)		
Group Officer in charge	overseas: o	Environmental Audit (Japan: once a year; overseas: conducted depending on the environmental risk of each plant)			
General Manager of		niai nsk of each plan	(L)		
General Administrat Group	Japan/Chir	Japan/China Environmental Management Meeting (twice a year)			
Environmental Management Division		Global Warming Prevention Environmental/ Energy-Saving Meeting (each region)			
Environmental Audit Team					
Works	Divisions	Group companies in Japan	Overseas Group companies		
Environment Committee members	Environment Committee members	Environment Committee members	Environment Committee members		

Environmental management audits

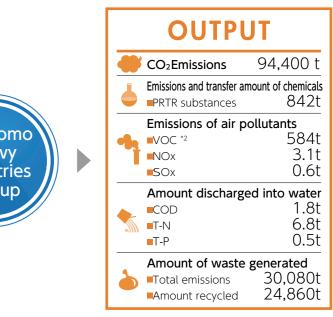

Implementation of audit on each Works/Group company in Japan and each overseas subsidiary company

Environmental Management Department of the Head Office conducts an environmental audit annually on each Works and Group company in Japan. Audit is conducted on the overall environmental management including environmental risk assessment, state of compliance with laws and regulations, and global warming prevention activities. In order to improve the environmental management level, the audit results are evaluated on a 5-point scale for each department based on our own evaluation criteria and the results are reported on operating officer meetings.

In addition, the Environmental Management Department conducts an audit for each overseas affiliated company with the primary purpose being to achieve targets of environmental risk reduction and global warming prevention activities in a planned manner by taking environmental loads of each company into account. As with Group companies in Japan, the audit results are evaluated on a 5-point scale and reported on operating officer meetings. Audits were conducted on 2 plants in the Philippines and 4 plants in China in FY 2019.

Environmental Targets (Medium-Term Plan) and Accomplishment

Overview of environmental loads in FY 2019 (SHI Group companies in Japan)


Sumitomo Heavy Industries Group

Environmental accounting in FY 2019

Implementation of positive investment on research & development (1.3 fold compared to the year before)

SHI Group implements environmental accounting based on the "Environmental Accounting Guidelines 2005" of the Ministry of Environment as a criterion to determine investments/costs and effectiveness related to environmental preservation.

	(Unit: Million yen)								
	Costs for environmental preservation						Effective	ness of er	nvironmental preservation
Category		Main efforts	Investment Cost Ec		Economic effect		A.A. 1		
			FY 2018	FY 2019	FY 2018	FY 2019	FY 2018	FY 2019	Main effects
(1)	Costs within business area	Maintenance/depreciation of environmental load reduction equipment or facilities	483	568	796	701	322	218	
Ę	(1)-1 Pollution prevention costs	Maintenance and management of air and water pollution prevention equipment or facilities, and measurement of noise/vibration	42	87	256	227	0	0	
Breakdown	costs (1)-2 Global environmental conservation costs	Investments in energy saving measures (power monitoring, energy saving equipment, and upgrade of lighting systems, etc.)	430	479	58	25	44	42	Cost reduction by energy/resource saving and 3Rs
Br	(1)-3 Resource recycling costs	Investments in waste reduction and resource recovery (recycle and reuse)	11	2	482	449	278	176	Cost reduction by waste reduction Sales value of valuable resources
	Jpstream/downstream costs	Reduction of product packaging materials, recycling of home electric appliances, and use of both sides of paper	1	1	1	2	0	0	
	Management activity costs	Maintenance and administration of ISO 14001 standards, and expansion of green spaces	14	10	154	114	0	0	
	Research & development costs	Research and development for environmental impact reduction of products and research and development of environmental equipment	2,499	3,361	495	246	0	0	
(5)	Social activity costs	Global environmental preservation and greening activities	0	0	1	1	0	0	
	Costs for handling environmental damage	Levies on air pollution loads, Burden charge for green belts and pollution compensation	0	0	0	0	0	0	
	Total 2,997 3,940 1,447 1,064 322 218								

*1 PRTR: Pollutant Release and Transfer Register *2 VOC: Volatile Organic Compounds

Environmental Targets (Medium-Term Plan) and Accomplishment

General overview of 5th Medium-term Environmental Plan (2017-2019) and FY2019 activities

Achieved 15 out of 20 items

Achievement status of targets and activities in FY 2019 as the final target fiscal year in the 5th Medium-Term Environmental Plan is as follows.

Evaluation: O Achieved riangle Achievement rate of 90% or higher imes Achievement rate of less than 90% 5th Medium-Tern ntal Plan (2017 ~ 2019) Environ Index Item FY 2019 target FY 2019 achievement Evaluation Review of Environmental Review of Environmental Reviewed and issued 1) Review of Environmental Philosoph Environmental Philosoph Review of Environmental Policy Review of Environmental Policy Reviewed and issued Environmental Policy Policy (2) Prevention of environmenta Zero occurrence of major Zero occurrence of major Zero occurrence of major accidents through environmental risk reduction environmental accident s No more than 3 occurrences environmental accidents No more than 3 occurrences environmental accidents 2 environmental accidents 00 Strengthening o of environmental accidents of environmental accidents occurred environmenta Implementation of education Implementation of education Implementation of education at the time of environmental management for raising the level of environmental personnel for raising the level of 3) Continual improvement of audits environmental personnel environmental managemen Continued activities in systems at overseas bases Establishment and expansion Establishment and expansion reference to cases of mother plants in Japan. of risk assessments of risk assessments (4) Promotion of management of chemicals contained in Promotion of management of chemicals contained in products (RoHS, REACH) Verification of the Promotion of management \bigcirc management status by environmental audits of chemicals contained in products products (RoHS, REACH) Energy productivity (Japan)Increase of 2.6% com-pared to FY 2016 (Overseas) Increase of 20% compared to FY 2016 Energy productivity (Japan) Energy productivity (Japan) 1) CO₂ emissions reduction × ncrease of 3% compared to ncrease of 3% compared to during product manufacturing FY 2016 (Overseas) Increase of 3% compared to FY 2016 FY 2016 (Overseas) Increase of 3% compared to FY 2016 \bigcirc Reduction of Calculation and publication of Publication of total Calculation and publication of CO₂ emissions in the product life cycle contribution amount of CO₂ reduction during product use in Integrated Report (Japan) total contribution amount of CO₂ reduction during product total contribution amount of CO₂ reduction during product 2) CO₂ emissions reduction \bigcirc during product use use (Japan) use (Japan) (3) CO₂ emissions reduction Amount of reduction: Per Amount of reduction Per basic Amount of reduction Per basic during product transportation (green logistics) unit of transportation weight / Reduction of 3% compared to FY 2016 (Japan) unit of transportation weight / Reduction of 3% compared to FY 2016 (Japan) basic unit of transportation weight / Increase of 5.5% compared to FY 2016 (Japan Amount of reduction Maintain amount of reduction of 34% compared to FY 2006 Maintain amount of reduction compared to FY 2006 of 34% compared to FY 2006 (Japan, 2 departments) : Total (Japan, 2 departments) (Japan, 2 departments): Total amount of use Reduction of 42% in tota (Japan, others) : Reduction of (Japan, others) : Reduction of 50% per basic unit of sales Amount of reduction compared to FY 2013 amount of use (1) Reduction of VOC emissions (Japan, 2 departments) : Basic (Japan, others) : Basic unit of unit of sales Maintain amount of reduction of 3% compared to FY 2013 Maintain amount of reduction of 3% compared to FY 2013 (Overseas) : Basic unit of sale (Overseas) : Reduction of 61% (Overseas) : Basic unit of sales per basic unit of sales Verification of disposal status (2) Planned disposal of PCB \bigcirc Planned disposal Planned disposal by environmental audits, continued disposal waste Amount of reduction per basic unit of sales (Japan) Reduction of 6% Amount of reduction per Amount of reduction per basic unit of sales (Japan) Reduction of 6% basic unit of sales (Japan) Reduction of 12% compared to FY 2013 (Overseas) Reduction of 6% compared to FY 2013 compared to FY 2013 (Overseas) Reduction of 6% compared to FY 2013 Reduction of 0 ompared to FY 2013 Reduction of waste discharge and its effective environmenta (Overseas) Increase of 10% Х loads in compared to FY 2013 (Japan) Non-landfill rate of 0.004% (Japan) Maintain a landfill rate of less than 0.5% (Overseas) Maintain a non-(Japan) Maintain a landfill rate of less than 0.5% (Overseas) Maintain a nonbusiness activities USP Ô (Overseas) Non-landfill rate o landfill rate of waste disposa landfill rate of waste disposa waste disposal of 76% of 95% of 95% Amount of reduction per basic unit of sales Amount of reduction per Amount of reduction per (4) Reduction of product basic unit of sales basic unit of sales Reduction of 28% compared to FY 2013 (Japan) packaging materials Reduction of 6% compared to Reduction of 6% compared to FY 2013 (Japan) FY 2013 (Japan) Amount of reduction in total Amount of reduction in total Amount of reduction in total X amount of use (Japan) Increase of 4.9% compared to the average amount of use Maintain the average amount used in the period from FY 2014 to 2016. Maintain the average amount used in the period from FY 2014 to 2016. during a period from FY 2014 to 2016 Amount of reduction per (5) Reduction of water consumption Amount of reduction per basic unit of sales (Overseas) mount of reduction per 0 basic unit of sales (Overseas) basic unit of sales (Overseas) Reduction of 21% compared to FY 2013 Reduction of 3% compared to Reduction of 3% compared to (1) Reduction of CO₂ emissions in the product life cycle Promotion of efforts on key Promotion of efforts on key Promotion of efforts of each Issues Issues department as key issues Conservation of biodiversity Verification of greening plan for each manufacturing base (2) Planting around offices Continued greening of plants Continued greening of plants and its implementation status by environmental accounting

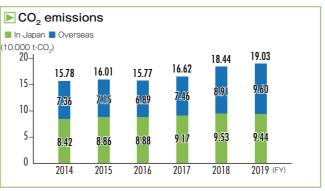
Global Warming Prevention Activities

SHI Group has been working on reduction of CO₂ emissions as our most important issue on every stage of our business activities.

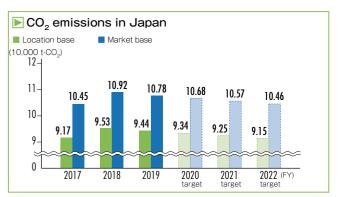
Promotion of environmental management

Promotion of full-participation efforts

In SHI Group, with a recognition of global warming prevention activities as a part of environmental management, results in each business department are managed monthly by Environmental Management Department to be fed back to persons in charge of business operations. In addition, the results are also reported to the management 3 times a year at operating officer meetings. Each department of SHI Group works on "full-participation" efforts and "visualization" of activities as well as various process improvement activities for further improving efficient energy use to promote global warming prevention activities.


CO₂ emissions reduction CO₂ emissions are on an increasing trend across the entire Group.

Overall CO_2 emissions of the entire SHI Group in FY 2019 increased by 6 % compared to FY 2016.


Factors of the increase include the following 3 items:
An increase in energy consumption along with an increase in production:

in consideration of the response to climate change.

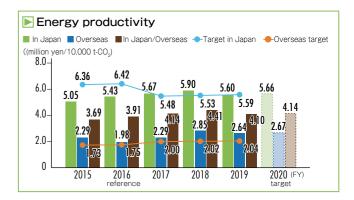
- An increase in electricity consumption associated with research and development (constant temperature rooms, clean rooms, commissioning, etc.); and
- An increase in air conditioning for ensuring product quality and preventing heat stroke among workers. Under the 6th Medium-Term Environmental Plan to be initiated from FY 2020, all employees across SHI Group have determined to work on total CO₂ emissions reduction

* Used a Japan conversion factor of 0.462 g-CO₂/kWh as a fixed value.

* Calculated using location-based CO₂ emission factor of 0.462 g-CO₂/kWh.

Improvement of energy productivity

Targets have been achieved overseas but not in Japan.

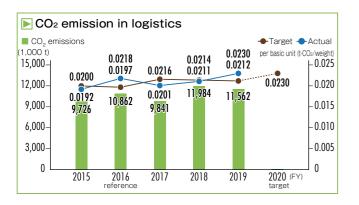

In relation to production activities accounting for a majority of CO_2 emissions in SHI Group, energy productivity (sales/ CO_2 emissions: Inverse of basic unit) is used to carry out monthly management and operation of each BU (business unit).

In spite of activities in FY 2019 carried out with a target of improvement by 3% compared to FY 2016, main production bases in Japan achieved an improvement of 2.6% being unable to clear the target only slightly.

As for overseas production bases, as a result of promotion of activities with the target of an improvement of 3% compared to FY 2016, the target was cleared by achieving an of improvement 20% in FY 2019.

We will continue to promote the following measures.

- Setting and practicing of total operation stop days
- Reduction of standby power of equipment
- Efficient operation of equipment
- Reduction of energy consumption by reducing production lead time


Global Warming Prevention Activities

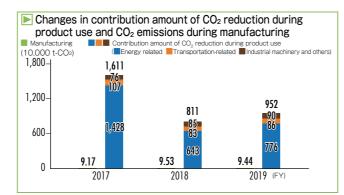
Promotion of green logistics

Promotion of loading ratio improvement as well as effective utilization of modal shift and consolidated cargo

We have been working on reduction of CO_2 emissions by eliminating waste and streamlining of transportation. With a target of reduction of 3% compared to FY 2016, promotion activities have been continued including loading ratio improvement as well as effective utilization of modal shift and consolidated cargo.

In FY 2019, actual performance increased by 0.023 compared to a target of 0.021 per transportation basic unit (t- CO_2 /weight), being unable to achieve the target. We will continue activities such as modal shift promotion and loading ratio improvement even after FY 2020.

Cyclo ® Reducer



Crude oil tanker

Contribution in CO₂ emissions reduction during product use

Calculation of contribution amount of CO₂ reduction during product use

Under the 5th Medium-Term Environmental Plan, contribution amount of CO_2 emissions reduction during product use is calculated for each business department and the result is disclosed. Contribution amount of CO_2 reduction during product use sold in FY 2019 was 1.76 million ton- CO_2 excluding energy-related equipment which amounts to approximately 18 times the total CO_2 emissions during manufacturing in SHI Group. 9.52 million ton- CO_2 obtained by adding a contribution amount of reduction in biomass boilers and electricity generating turbines to this value is a contribution amount of CO_2 reduction of SHI Group.

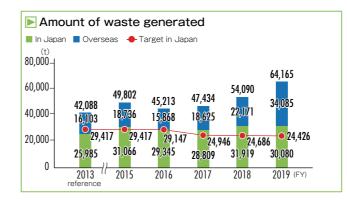
Magic Rack®

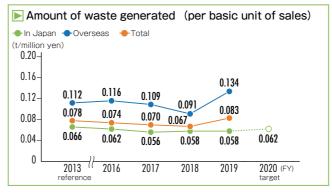
Semiconductor manufacturing equipment (New all-in-one type ion implanter: SAion)

Recycling-Oriented Society Activities

We have been making efforts on suppressing waste substances discharged from business activities and recycling/effective use of such waste.

Promotion of environmental management

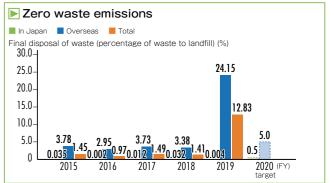

Building a recycling-oriented society


In order to build a recycling-oriented society, the SHI Group has been working to reduce waste emissions and so forth from business activities and recycle and effectively use waste generated. We have also sought to reduce environmental impacts through business activities.

Suppression of emissions and reduction of disposal amount

Achievement of a target of emissions per basic unit of sales in Japan

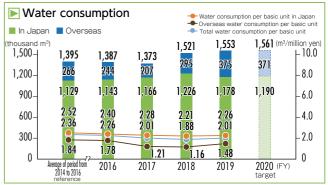
In Japan, as a result of full-fledged efforts on streamlining of production activities, elimination of waste use, suppression of emissions including metallic scraps, and segregated management trying to achieve a target of reduction of waste discharge amount per basic unit of sales of 6% compared to FY 2013, we have achieved a reduction of 12% in FY 2019 compared to FY 2013. As for overseas subsidiary companies, as a result of activities trying to achieve the similar target of a reduction of 6% compared to FY 2013, their activities resulted in an increase of 10% in FY 2019.


Zero emissions

Zero emissions have been achieved at all SHI Group companies in FY 2019.

With a definition that a plant with a ratio of landfill disposal volume to waste discharge volume (landfill rate) of less than 0.5% is a zero-emission plant, SHI Group has been promoting such activities in Japan since FY 2005. As a landfill rate of 0.004% shows that was achieved in 2019 by all Japan manufacturing sites (6 Works and 7 plants) and group businesses other than Works (9 companies) in cooperation, the target has been continuously achieved since FY 2011.

Overseas, in spite of initiatives with a target to achieve a non-landfill rate of no less than 95%, the result was far from the target in FY 2019, only achieving 76%.


Landfill rate in total of Japan and overseas in FY 2019 was 12.83%. Recycling through waste segregation is important for achieving zero emissions. We pursue our plants to be able to contribute to a recycling-oriented society based on continued strict waste segregation to maintain zero emissions in the future.

Reduction of water consumption

Water consumption in Japan is on an increasing trend

In SHI Group, since unnecessary water consumption was judged to have been almost eliminated as a result of continued reduction of water consumption, it was set as a target in the 5th Medium-Term Environmental Plan that the average water consumption during the previous Medium-Term Plan (from 2014 to 2016) should be maintained in Japan. In FY 2019, it resulted in an increase of 4.9% compared to the target of reduction mainly due to large quantity of water used for sprinkling during a scorching summer and for cleaning required after disasters from torrential rains. We aim to achieve the target by continued efforts on reduction of water consumption.

Chemical Management Activities

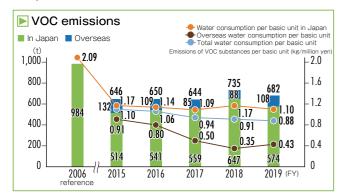
We manage chemicals to promote prevention of environmental pollution.

Complete elimination of organochlorine chemicals

Continued complete elimination of use

Complete elimination of substances subject to the Soil Contamination Countermeasures Act

We have been continuously working on complete elimination of organic chemicals subject to the Soil Contamination Countermeasures Act, namely dichloromethane, tetrachloroethylene, and trichloroethylene.


Complete elimination of ozone-depleting substances

Complete abolition of the use of ozone-depleting substances HCFC-225 and HCFC-141 b since FY 2008 and FY 2010, respectively, has been continued. We have been promoting scheduled renewal of R-22 of which production is to be discontinued in FY 2020.

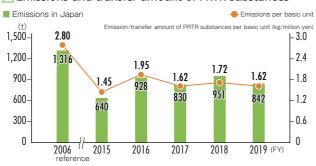
Emission control of VOC substances

Group companies in Japan achieved a 42% reduction of emissions compared to FY 2006 and a 50% reduction per basic unit of sales

Toluene, xylene, and ethyl benzene contained in paint solvents account for at least 90% of the VOC substances used by SHI Group. We are working on a target to maintain a reduction of at least 34% compared to FY 2006. In FY 2019, we achieved a 42% reduction compared to FY 2006 by introducing powder coating, adopting low solvent paints and VOC-free cleaning agents, and reducing paint consumption through improvement of paint efficiency. In addition, we also achieved a 50% reduction per basic unit of sales. We have determined to continuously work on emissions reduction also from FY 2020 and beyond by taking measures such as expansion of scope for adopting VOC-free cleaning agents, low solvent paints and powder coating, and reduction of paint consumption through further improvement of painting efficiency. Overseas subsidiary companies also commenced the activities in FY2012.

Emissions and transfer volume of PRTR substances

Reduction of 41% and compared to FY 2006 and 50% per basic unit of sales


At least 90% of PRTR substances is shared by paint solvents (toluene, xylene, and ethyl benzene). In FY 2019, a 41% reduction was achieved compared to FY 2006. In addition, we also achieved a 50% reduction per basic unit of sales. We will work on reduction of emissions and transfer volume by establishing and expanding solvent recovery and removal equipment or facilities while maintaining quality and expanding the adoption of low solvent paints.

Emissions and transfer amount of Class I Designated Chemicals Substances under the PRTR Law in FY 2019 (Substances subject to reporting)

			(Unit: kg)
Substance	Substance designation	Emissions + trar	nsferred amount
No.	Substance designation	FY 2018	FY 2019
53	Ethylbenzene	218,658	217,247
80	Xylene	498,744	397,275
240	Styrene	2,050	1,561
296	1,2,4-Trimethylbenzene	16,901	21,127
297	1,3,5-Trimethylbenzene	5,559	6,187
300	Toluene	156,262	142,686
374	Hydrogen fluoride and water-soluble salts	17,555	22,381
384	1-Bromopropane	11,122	11,474
392	n-Hexane	866	321
405	Boron and compounds	1,618	1,155
412	Manganese and compounds	12,366	12,011
420	Methyl methacrylate	1,366	640

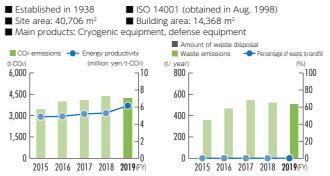
* Emissions + transferred amount is the total amount for SHI and all its Group companies.

Emissions and transfer amount of PRTR substances

Control of PCB and complete abolition of such devices as to use PCB

Gradual replacement/detoxification of stabilizers containing PCB

All of the devices containing high concentration PCB have been registered earlier to the Japan Environmental Storage & Safety Corporation, which is a waste-disposal company, and are detoxified in a planned manner based on the Act on Special Measures concerning Promotion of Proper Treatment of PCB Waste. Transformers containing PCB and stabilizers for lighting equipment containing PCB are replaced/ detoxified in sequence. Moreover, upon completion of a survey of equipment containing low concentration PCB, we have been working on its detoxification in sequence.


Environmental Load Data

Environmental load data of Works* 1 of Sumitomo Heavy Industries, its Group companies in Japan* 2 and main overseas Group companies is as follows. *1 Including Group companies within Works *2 Group companies outside of Works

-100

[Environmental load data of each Works]

Tanashi Works

Chiba Works

Established in 1965 ■ ISO 14001 (obtained in Apr. 1999) Site area: 297,039 m² ■ Building area: 111,684 m² Main products: Plastic processing machines, metallic molds, hydraulic excavators

Energy consumption				
Electric power (1,000 kWh)	7,178			
Gasoline (kL)	0.02			
Kerosene (kL)	0.57			
Heavy fuel oil A (kL)	0.00			
Light oil (kL)	2.42			
LPG (t)	0.00			
LNG (t)	0.00			
City gas (1,000 m ³)	2.00			
Water consumption (m ³)	11,909			
Atmospheric discharge				
SOx (kg)				
NOx (kg)	-			
Atmospheric di SOx (kg)				

PRTR (kg/year)	Emissions	Transfer volume
Ethylbenzene	25.0	0.0
1,2 – Epoxybutane	2.2	0.0
Ferric chloride	0.0	68.4
Xylene	52.6	0.0
Chromium and chromium (III) compounds	0.0	16.2
Chromium (VI) compounds (including lead chromate)	0.0	22.7
Ethylene glycol monoethyl ether Acetate	9.4	0.0
Toluene	371.2	0.0
Lead	0.0	28.2
Lead compounds	0.0	1.4
Nickel	0.0	0.0
1-Bromopropane	6,074.4	0.0
Boron and compounds	0.1	0.0
Manganese and compounds	0.0	114.4

Energy consumption				
Electric power (1,000 kWh)	21,227			
Gasoline (kL)	143.61			
Kerosene (kL)	1.28			
Heavy fuel oil A (kL)	0.00			
Light oil (kL)	696.16			
LPG (t)	42.17			
LNG (t)	0.00			
City gas (1,000 m ³)	1,391.68			
Water consumption (m ³)	75,466			
Atmospheric discharge				
SOx (kg) -				
NOx (kg) 198				

PRTR (kg/year)	Emissions	Transfer volume
Zinc compounds (water-soluble)	197	36
Ethylbenzene	22,633	59,860
Xylene	38,752	75,320
Silver and water-soluble compounds	0	0
Styrene	500	294
1,2,4-Trimethylbenzene	5,353	2,949
1,3,5-Trimethylbenzene	149	49
Toluene	12,380	969
Naphthalene	633	370
Nickel compounds	4	4
Hydrazine	6	0
Di-n-butyl phthalate	0	0
Hexamethylene diisocyanate	150	73
n-Hexane	134	79
Manganese and compounds	7	7
Methyl methacrylate	327	192

[Environmental load data of each Works]

Yokosuka Works

■ ISO 14001 (obtained in Mar. 1999) Established in 1971 ■ Building area: 170,635m² Site area: 523,000 m² Main products: Stage systems, system controllers, laser proce systems, semiconductor manufacturing equipment (molding r precision forgings, ships

,	Gasoline (kL)
occing	Kerosene (kL)
essing machines),	Heavy fuel oil A (kL)
nacimico),	Light oil (kL)
	LPG (t)
Percentage of waste to landfill	LNG (t)
(%)	City gas (1,000 m3)
-100 r	Water consumption (m ³)
	Atmospheric dis
-100	SOx (kg)
- 60	NOx (kg)
10	Discharge into
- 40	COD (kg)
- 20	Nitrogen (kg)
	Phosphorus (kg)

Energy consumption Electric power (1,000 kWh) 44,44

1,197.3

148,13

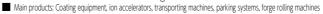
charge

water 418. 270. 56.

		C :	Transformations
ion	PRTR (kg/year)		Transfer volume
44,441	Zinc compounds (water-soluble)	361	7
29.83	Methyl acrylate	0	0
0.00	Acetonitrile	0	17
0.00	o-Anisidine	0	0
210.93	Ethylbenzene	77,736	0
11.06	Ferric chloride	2	47
0.00	Cadmium and compounds	2	62
1,197.34	Xylene	118,445	2
148,138	Silver and water-soluble compounds	1	71
large	Glutaraldehyde	0	1
_	Chromium and chromium (III) compounds	0	11
603	Chromium (VI) compounds (including lead chromate)	1	130
ater	Chloroform	0	3
418.7	Cobalt and compounds	0	0
270.2	Dichloromethane	0	1
56.2	N,N-Dicyclohexylamine	5	87
	N,N-Dimethylformamide	0	0
	Mercury and compounds	0	16
	Copper salts (water-soluble, except complex salts)	0	6
	1,2,4-Trimethylbenzene	60	0
	1,3,5-Trimethylbenzene	22	0
	Toluene	32,268	83
	Lead compounds	0	1
	Nickel	0	3
	O-Nitroanisole	0	0
	Carbon disulfide	0	4
	Vanadium compounds	0	0
	Polycarbonate	0	0
	Arsenic and inorganic compounds	0	0
	Hydroquinone	0	4
	Pyridine	0	0
	Phenol	459	1
	Hydrogen fluoride and water-soluble salts	20	19,274
	1-Bromopropane	4,236	1,164
	Hexamethylene diisocyanate	0	9
	n-Hexane	6	95
	Water-soluble salts of peroxodisulfuric acid	0	1
	Benzene	0	0
	Boron and compounds	3	31
	Poly (oxyethylene) nonylphenyl ether	0	0
	Manganese and compounds	1,055	9,805
	manganese and compounds	1,000	5,005

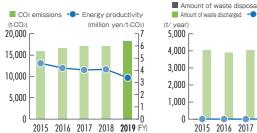
Molybdenum and compounds

Tritolyl phosphate


Triphenyl phosphate

Ehime Works (Niihama Factory)

Established in 1888 ISO 14001 (obtained in Nov. 1999)



Nagoya Works

Established in 1961 Site area: 293,000 m²

Main products: Power transmission and controls, gear motors, inverters, construction cranes

Amount of waste discharged -- Percentage of waste to land (t/ year) 5,000 r 4,000 3,000 2,000

Building area: 90,000 m²

ISO 14001 (obtained in Jan. 1999)

	Energy consun	nption			
	Electric power (1,000 kWh)	24,038			
	Gasoline (kL)	39			
	Kerosene (kL)	0.31			
	Heavy fuel oil A (kL)	-			
	Light oil (kL)	150			
ndfill	LPG (t)	6.2			
i gi i ii	LNG (t)	0.0			
	City gas (1,000 m ³)	1,066.12			
	Water consumption (m ³)	125,602			
	Atmospheric discharge				
	SOx (kg)	-			
	NOx (kg)	23			
	Discharge into	arge into water			
	COD (kg)	778.5			
	Nitrogen (kg)	80.3			
	Phosphorus (kg)	3.0			

(%)

2015 2016 2017 2018 2019 FM

100

PRTR (kg/year)	Emissions	Transfer volume
Acrylic acid and its solutions	1	0
Ethylbenzene	10,098	588
Xylene	76,303	3,722
Cumene	153	0
Cobalt and compounds	0	0
Styrene	657	70
1,2,4-Trimethylbenzene	6,427	26
1,3,5-Trimethylbenzene	1,735	1,272
Tolylene diisocyanate	0	0
Toluene	23,478	154
Naphthalene	371	0
Nickel	0	1
Water-soluble salts of peroxodisulfuric acid	0	0
Benzene	1	0
Boron and compounds	26	0
Poly (oxyethylene) = alkyl ether (Limit to those with alkyl C=12-15 and its mixture)	4	0
Manganese and compounds	29	53
n-Butyl methacrylate	0	0
Methyl methacrylate	115	0
α -Methylstyrene	115	0
1-Methyl-1-phenylethyl hydroperoxide	2	0
Methylenebis (4,1-phenylene) = diisocyanate	0	5
Molybdenum and compounds	0	0

0

138

0

7

Ehime Works (Saijo Factory)

■ Established in 1973 ■ Site area: 535,036 m² ■ Building area: 83,104 m² Main products: Pressure vessels, stirring/mixing machines, coke oven machines, steel structures

Energy consumption				
tric power (1,000 kWh)	4,937			
soline (kL)	0.24			
osene (kL)	0.00			
avy fuel oil A (kL)	0.00			
nt oil (kL)	5.19			
G (t)	82.84			
G (t)	0.00			
y gas (1,000 m³)	0.00			
ter consumption (m ³)	9,884			
Atmospheric discharge				
x (kg)	-			
)x (kg)	314			
Discharge into water				
D (kg)	27.2			
rogen (kg)	300.8			
sphorus (kg)	1.3			

PRTR (kg/year)	Emissions	Transfer volume
Ethylbenzene	1,179	0
Xylene	2,014	0
1,3,5-Trimethylbenzene	0	0
Toluene	3,886	0

Energy consumption					
25,403					
8.30					
4.50					
529.00					
88.60					
581.50					
229.00					
0.00					
658,566					
Atmospheric discharge					
591					
1,403					
Discharge into water					
164.4					
540.7					
4.3					


PRTR (kg/year)	Emissions	Transfer volume
Zinc compounds (water-soluble)	0	0
Acetonitrile	0	82
Antimony and compounds	0	0
Bisphenol A (not bisphenol A type liquid epoxy resin)	0	0
Ethylbenzene	27,025	2,275
Ferric chloride	0	0
1-Octanol	0	0
Xylene	39,264	3,577
Cumene	0	0
Chromium and chromium (III) compounds	0	241
Chromium (VI) compounds (including lead chromate)	0	0
Cobalt and compounds	4	1
Ethylene glycol monoethyl ether acetate	0	0
Styrene	14	1
Copper salts (water-soluble, except complex salts)	0	0
Triethylenetetramine	0	0
3,5,5-Trimethyl-1-hexanol	0	0
1,2,4-Trimethylbenzene	148	3
1,3,5-Trimethylbenzene	28	0
Toluene	34,705	3,817
Naphthalene	81	1
Nickel	0	75
Nonylphenol	59	0
n-Butyl benzyl phthalate	70	5
n-Butyl benzyl phthalate	1	0
Hydrogen fluoride and water-soluble salts	3	0
Hexamethylene diisocyanate	24	0
n-Hexane	7	0
Water-soluble salts of peroxodisulfuric acid	0	0
Boron and compounds	38	117
Manganese and compounds	222	655
n-Butyl methacrylate	0	0
1-Methyl-1-phenylethyl hydroperoxide	0	0
Molybdenum and compounds	1	20

Energy consumption				
Electric power (1,000 kWh)	8,511			
Gasoline (kL)	7.37			
Kerosene (kL)	0.00			
Heavy fuel oil A (kL)	4.65			
Light oil (kL)	46.38			
LPG (t)	183.86			
LNG (t)	0.00			
City gas (1,000 m ³)	0.00			
Water consumption (m ³)	76,353			
Atmospheric discharge				
SOx (kg)	44			
NOx (kg)	193			
Discharge into water				
COD (kg)	392.2			
Nitrogen (kg)	507.9			
Phosphorus (kg) 36.				

PRTR (kg/year)	Emissions	Transfer volume
Ethylbenzene	2,306	2,132
Xylene	8,536	7,021
Styrene	8	9
1,2,4-Trimethylbenzene	354	523
1,3,5-Trimethylbenzene	82	131
Toluene	3,209	3,007
Naphthalene	23	18
Phenol	0	0
Hexamethylene diisocyanate	16	13

[Environmental load data for Group companies in Japan (outside of Works)]

Shin Nippon Machinery Co., Ltd. Main products: Turbines, pumps

	Lifeigy consumption			
	Electric power (1,000 kWh)	4,111.9		
	Gasoline (kL)	0.0		
	Kerosene (kL)	191.9		
o landfill	Heavy fuel oil A (kL)	0.0		
	Light oil (kL)	3.1		
00	LPG (t)	5.5		
D	City gas (1,000 m ³)	0.1		
J	Water consumption (m ³)	16,558		
0	Atmospheric discharge			
<u> </u>	Sox (kg)	6		
D	Nox (kg)	353		
D	Discharge into v	vater		
	COD (kg)	-		
	Nitrogen (kg)	-		
	Phosphorus (kg)	-		

Energy consumption

Gasoline (kL)

Kerosene (kl.)

Light oil (kL)

LPG (t)

Sox (kg)

Nox (kg)

waste to landfil

100

- 80

40

Heavy fuel oil A (kL)

City gas (1,000 m³)

Water consumption (m³)

Electric power (1,000 kWh) 1,529.0

Atmospheric discharge

Enorgy consumption

	PRTR (kg/year)	Emissions	Transfer volume
)	2-Aminoethanol	12	1
)	Antimony and compounds	8	1
)	Ethylbenzene	739	80
)	Xylene	2,444	263
	Cumene	56	6
5	Chromium and chromium (III) compounds	13	1
	Cobalt and compounds	72	8
3	Styrene	1	0
	1,2,4-Trimethylbenzene	2,023	225
5	1,3,5-Trimethylbenzene	643	71
8	Toluene	540	52
	Naphthalene	0	0
	Nickel compounds	0	0
-	Vanadium compounds	2	0
-	Di-n-butyl phthalate	0	0 0 0
_	n-Butyl benzyl phthalate	0	0
	Hexamethylene diisocyanate	0	0
	Manganese and compounds	8	1
	n-Butyl methacrylate	1	0

nissions Transfer volume

431

645

1

0

0

13

6

0

24

0

8.87

1.008

422

664

0

12

4

0


1

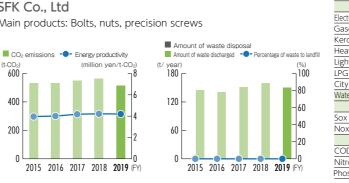
1

22

1.136

Sumitomo Heavy Industries Gearbox Co., Ltd. Main products: Gear reducers

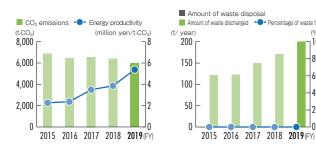
Sumitomo Heavy Industries Modern, Ltd. Main products: Plastic extrusion molding machines



Izumi Food Machinery Co., Ltd.

SFK Co., Ltd

Main products: Bolts, nuts, precision screws


Group companies in Japan that have independently received ISO 14001 certification

Group company	Date of certification	Group company	Date of certification
Sumitomo NACCO Forklift Co., Ltd.	Mar. 2000	Nihon Spindle Mfg. Co., Ltd.	Mar. 2006
Shin Nippon Machinery Co., Ltd.	Feb. 2002	Japan Electron Beam Irradiation Service Co., Ltd.	Jan. 2007
Izumi Food Machinery Co., Ltd.	Jun. 2002	Sumitomo Heavy Industries Power Transmission & Controls Sales Co., Ltd.	Sept. 2007
Sumitomo Heavy Industries Ion Technology Co., Ltd.	Oct. 2002	SFK Co., Ltd	Aug. 2008
Sumiju Environmental Engineering Co., Ltd.	Oct. 2002	Sumitomo Heavy Industries Gearbox Co., Ltd.	Aug. 2009
Sumitomo Heavy Industries Environment Co., Ltd.	Nov. 2002	Sumitomo Heavy Industries Modern, Ltd.	Dec. 2009
Lightwell Co., Ltd.	Feb. 2005	Kyokuto Seiki Co., Ltd.	Feb. 2015

Nihon Spindle Mfg. Co., Ltd. Main products: Industrial instruments, environmental equipment

Sumitomo Heavy Industries Ion Technology Co., Ltd. Main products: Ion implanters

Sumitomo NACCO Forklift Co., Ltd. Main products: Forklifts

13

	Energy consump	otion
	Electric power (1,000 kWh)	3,058.4
	Gasoline (kL)	5.1
	Kerosene (kL)	0.0
dfill	Heavy fuel oil A (kL)	0.0
	Light oil (kL)	12.3
	LPG (t)	0.0
	City gas (1,000 m ³)	250.0
	Water consumption (m ³)	8,689
	Atmospheric disc	harge

Sox (kg)

Nox (kg)

	PRTR (kg/year)	Emissions	Transfer volume
58.4	Zinc compounds (water-soluble)	0	65
5.1	Ethylbenzene	8,328.74	410
0.0	Ethylene glycol monoethyl ether (2-Ethoxyethanol)	97.21	5
12.3	Ethylenediamine	36.90	2
0.0	Xylene	18.056.41	890
50.0	Cumene	96.94	5
.689	Ethylene glycol monoethyl ether acetate	235.29	12
	Styrene	2.02	0
-	1,2,4-Trimethylbenzene	2,842.39	140
_	1,3,5-Trimethylbenzene	1,867.31	92
	Toluene	6,558.17	323
	Naphthalene	305.21	15
	Nickel compounds	5.72	0
	Di-n-butyl phthalate	3.92	0
	Hexamethylene diisocyanate	41.23	2
	Boron and compounds	893.22	45
	Formaldehyde	28.29	1
	Manganese and compounds	8.38	0
	n-Butyl methacrylate	124.97	6
	Methyl methacrylate	2.03	0

 α -Methylstyrene

Energy consump	otion	
Electric power (1,000 kWh)	10,196.1	2-Amin
Gasoline (kL)	-	Antimo
Kerosene (kL)	-	Ethylen
Heavy fuel oil A (kL)	-	(2-Etho)
Light oil (kL)	-	Toluene
LPG (t)	-	Arsenic
City gas (1,000 m ³)	-	Hydroger
Water consumption (m ³)	19,051	Boron a
Atmospheric disc	harge	Molybd
Sox (kg)	-	
Nox (kg)	-	

ion	PRTR (kg/year)	Emissions	Transfer volume
10,196.1	2-Aminoethanol	0	6.00
-	Antimony and compounds	0	0.20
	Ethylene glycol monomethyl ether (2-Ethoxyethanol)	0	6.60
_	Toluene	0	13.92
_	Arsenic and inorganic compounds	0	0.54
-	Hydrogen fluoride and water-soluble salts	0	4.00
19.051	Boron and compounds	0	0.75
arge	Molybdenum and compounds	0	0.36

PRTR (kg/year)

Chromium (VI) compounds (including lead chromate

Cobalt and compounds

1,2,4-Trimethylbenzene

1.3.5-Trimethylbenzene

Vanadium compounds

Ethylbenzene

Xylene

Styrene

Toluene

Benzene

Naphthalene

Formaldehyde

2.2

0.0

0.0

0.0

27.3

9,589

Energy consumption			
tric power (1,000 kWh)	4,712.5		
soline (kL)	0.8		
osene (kL)	0.9		
avy fuel oil A (kL)	0.0		
nt oil (kL)	1.5		
G (t)	8.4		
y gas (1,000 m³)	108.0		
ter consumption (m ³)	9,500		
Atmospheric discharge			
(kg)	-		
x (kg)	19		

PRTR (kg/year)	Emissions	Transfer volume
Ethylbenzene	59	115
Ethylene glycol monoethyl ether (2-Ethoxyethanol)	11	21
Xylene	113	226
Styrene	0	4
1,3,5-Trimethylbenzene	5	12
Toluene	3,301	6,604
Lead	17	33
Hexamethylene diisocyanate	2	4
Methyl methacrylate	0	4

Energy consumption				
Electric power (1,000 kWh)	1,228.5			
Gasoline (kL)	0.0			
Kerosene (kL)	0.0			
Heavy fuel oil A (kL)	0.0			
Light oil (kL)	23.4			
LPG (t)	0.4			
City gas (1,000 m ³)	0.0			
Water consumption (m ³)	2,786			
Atmospheric discharge				
Sox (kg)	-			
Nox (kg)	-			

PRTR (kg/year)	Emissions	Transfer volume
Ethylbenzene	806	0
Xylene	964	0
Cumene	0	0
1,2,4-Trimethylbenzene	29	0
1,3,5-Trimethylbenzene	17	0
Toluene	4,821	0
Di-n-butyl phthalate	45	0

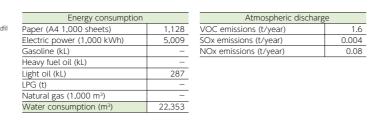
Energy consumption				
Electric power (1,000 kWh)	457.2			
Gasoline (kL)	0.0			
Kerosene (kL)	0.0			
Heavy fuel oil A (kL)	0.3			
Light oil (kL)	0.0			
LPG (t)	0.0			
City gas (1,000 m ³)	5.8			
Water consumption (m ³)	3,528			
Atmospheric discharge				
Sox (kg)	-			
Nox (kg)	-			

PRTR (kg/year)	Emissions	Transfer volume
Ethylbenzene	0	0
Xylene	0	0
Chromium (VI) compounds (including lead chromate)	0	0
Cobalt and compounds	0	0
Triethylenetetramine	0	0
1,2,4-Trimethylbenzene	0	0
1,3,5-Trimethylbenzene	0	0
Toluene	0	0
Lead compounds	0	0
Di-n-butyl phthalate	0	0
Hydrogen fluoride and water-soluble salts	9	0
n-Hexane	0	0
1-Methyl-1-phenylethyl = Hydroperoxide	0	0

Energy consumption				
tric power (1,000 kWh)	840.3			
soline (kL)	0.4			
rosene (kL)	7.8			
avy fuel oil A (kL)	0.0			
ht oil (kL)	0.0			
G (t)	0.7			
y gas (1,000 m³)	0.0			
ter consumption (m ³)	692			
Atmospheric discharge				
< (kg)	-			
x (kg)	-			
Discharge into water				
D (kg)	3.7			
rogen (kg)	-			
osphorus (kg)	-			

Complete elimination of PRTR substances

[Environmental load data for main overseas Group companies]


Sumitomo Heavy Industries (Tangshan), Ltd. Country: China Main products: Power transmission and controls

Energy consumpt	Energy consumption		harge
Paper (A4 1,000 sheets)	869	VOC emissions (t/year)	Less than 1 t
Electric power (1,000 kWh)	9,869	SOx emissions (t/year)	0.67
Gasoline (kL)	-	NOx emissions (t/year)	1.8
Heavy fuel oil (kL)	-		
Light oil (kL)	-		
LPG (t)	-		
Natural gas (1,000 m3)	1,191		
Water consumption (m3)	30,534		

Sumitomo (SHI) Cyclo Drive China, Ltd. Country: China Main products: Power transmission and controls


Ningbo Sumiju Machinery, Ltd.

Country: China Main products: Plastic injection molding machines, components for power transmission equipment

Energy consumption		Atmospheric discharge	5
Paper (A4 1,000 sheets)	580	VOC emissions (t/year)	1.4
Electric power (1,000 kWh)	4,908	SOx emissions (t/year)	-
Gasoline (kL)	-	NOx emissions (t/year)	-
Heavy fuel oil (kL)	-		
Light oil (kL)	14		
LPG (t)	-		
Natural gas (1,000 m ³)	-		
Water consumption (m ³)	16,377		

Sumitomo (S.H.I.) Construction Machinery (Tangshan) Co., Ltd. Country: China Main products: Hydraulic excavators, road machinery

Energy consumption		Atmospheric discharge	
Paper (A4 1,000 sheets)	1,037	VOC emissions (t/year)	45.4
Electric power (1,000 kWh)	13,599	SOx emissions (t/year)	0.4
Gasoline (kL)	-	NOx emissions (t/year)	3.97
Heavy fuel oil (kL)	-		•
Light oil (kL)	34		
LPG (t)	31		
Natural gas (1,000 m³)	1,621		
Water consumption (m ³)	72,501		

Sumitomo Heavy Industries (Vietnam) Co., Ltd. Country: Vietnam Main products: Power transmission and controls, motors

Energy consumption		Atmospheric discharge	
Paper (A4 1,000 sheets)	6,108	VOC emissions (t/year)	1.3
Electric power (1,000 kWh)	18,504	SOx emissions (t/year)	-
Gasoline (kL)	-	NOx emissions (t/year)	-
Heavy fuel oil (kL)	-		
Light oil (kL)	-		
LPG (t)	471		
Natural gas (1,000 m³)	-		
Water consumption (m ³)	36,466		

SHI Manufacturing & Service (Philippines) Inc. Country: Philippines Main products: Precision parts and components

Link-Belt Cranes, L.P., LLLP Country: US Main products: Construction cranes

Sumitomo Machinery Corporation of America Country: US Main products: Power transmission and controls

Sumitomo (SHI) Demag Plastics Machinery GmbH Country: Germany Main products: Plastic molding machines

Hansen Industrial Transmissions NV Country: Belgium Main products: Power transmission and controls

Energy consumption	
per (A4 1,000 sheets)	860
ctric power (1,000 kWh)	2,354
soline (kL)	2
avy fuel oil (kL)	3
nt oil (kL)	-
5 (t)	1
tural gas (1,000 m³)	-
iter consumption (m ³)	15,071

Atmospheric discharge	
VOC emissions (t/year)	Less than 1 t
SOx emissions (t/year)	-
NOx emissions (t/year)	-

Energy consumption	
per (A4 1,000 sheets)	1,587
ctric power (1,000 kWh)	16,280
soline (kL)	-
avy fuel oil (kL)	-
ht oil (kL)	-
G (t)	-
tural gas (1,000 m³)	1,972
ater consumption (m ³)	27,084

Atmospheric discharg	e
VOC emissions (t/year)	36.4
SOx emissions (t/year)	0.02
NOx emissions (t/year)	3.14

Energy consumption	
per (A4 1,000 sheets)	994
ctric power (1,000 kWh)	6,670
soline (kL)	-
avy fuel oil (kL)	-
ht oil (kL)	-
G (t)	9
tural gas (1,000 m³)	193
ater consumption (m ³)	2,398

Atmospheric discharg	je
VOC emissions (t/year)	1.5
SOx emissions (t/year)	-
NOx emissions (t/year)	_

Energy consumption	
per (A4 1,000 sheets)	4,984
ctric power (1,000 kWh)	7,890
soline (kL)	-
avy fuel oil (kL)	-
ht oil (kL)	1
G (t)	190
tural gas (1,000 m³)	405
ater consumption (m ³)	11,402

Atmospheric discharg	je
VOC emissions (t/year)	8.4
SOx emissions (t/year)	-
NOx emissions (t/year)	-

Energy consumption	
per (A4 1,000 sheets)	1,548
ctric power (1,000 kWh)	7,807
soline (kL)	-
avy fuel oil (kL)	-
ht oil (kL)	-
G (t)	-
tural gas (1,000 m³)	894
ater consumption (m ³)	4,611

Atmospheric discharg	e
/OC emissions (t/year)	2.9
SOx emissions (t/year)	-
NOx emissions (t/year)	1.26